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Abstract—The goal of this project was to develop a technique
for distributed absolute localization of robot swarms that inter-
operate between GPS accessible and GPS denied environments.
Such scenarios typically arise in search and rescue operations
for disaster management tasks. Especially, in calamities such as
earthquakes, where it is impossible for humans to reach victims
trapped under collapsed debris and structures, an army of small
robots that can crawl through tight spaces between the rubble
to locate victims can be a life-saving tool. However, such robots
would need to locate themselves reliably in an hostile GPS denied
environment (such as a collapsed building). This problem can
be approached by combining previous work on Simultaneous
Localization And Mapping (SLAM) [3] and Distributed Relative
Localization of Swarms [4] with Wireless Sensor Networks.

I. INTRODUCTION AND BACKGROUND

The information available to robotic swarms is not always
consistent across all the robots. This can happen through
either environmental factors or failure of robotic components.
Environmental factors that can contribute to these inconsis-
tencies include constriction points in the terrain, areas with
overhangs like caves or buildings, or areas with partial Faraday
cage effects due to high concentration of ferrous materials in
the walls or other structures in the environment. One such
case was Operation Surya led by Indian Army during floods
in 2013 at Kedarnath which was caused by monsoon rains,
flash floods, and landslides. During this calamity, as many
as 207 mobile towers were knocked down by the fury of
the floods and approximately 10,000 troops were deployed
to rescue and help the needy people. Today, we can use a
number of robots and map and scan the area affected and
deploy the rescue measures as per requirement. However,
such systems heavily depend on GPS based localization for
navigation, which limits their usage in situations like going
in an underground cave or inside a metallic bunker. Failure
of some sensors can cause an error in navigation and render
the robot inoperable. Furthermore, when this inconsistency
in information is on localization information this can pose
challenges to determining the most appropriate behavior for
the swarm and especially individual members of the swarm.
In the case of damaged but still otherwise operable robots,
the ability of the swarm to provide localization information
may improve the chances of recovering said robots. In the
case of disparities in localization information, the ability of the

swarm to provide absolute localization information may aid in
many other tasks including: obstacle avoidance, exploration,
or search and rescue. Furthermore, for mixed ability robot
swarms reducing the number of robots that have GPS may
offer significant cost savings or the ability to use other
resources on limited systems. Thus, the precise and accurate
absolute localization of robotic swarms is an important ability
to develop.

A. Prior Work

The challenge of localization has long been approached
through the use of various techniques. In [8], problems about
the localization of two robots without any prior information
of each others location has been discussed. In this paper, two
robots are initialized each unaware of others location. As they
navigate, the robots wirelessly share and match laser-scans
attempting to solve for the others pose in the local frame. After
observing a common area, the robots compute a transformation
between their local coordinates frames. Thus a combined
3D map is initialized and the map and estimated transform
are refined online based on new sensor measurements. The
combined map contains sections independently explored by
each robot. To accomplish this strategy, pose correspondents
are built by matching sensor measurements shared by each
robot. Robots can localize to one another online, even after
being initialized in different buildings. Hence larger areas can
be explored using multiple robots.

In [5], the overall goal is to perform a building-clearing
mission, where a swarm of robots enter whose layout is
unknown. The robots then disperse through the building and
attempt to locate an object of interest. Once the object has
been located, the swarm remains in the building to protect
the item of interest until friendly forces arrive. For this, they
developed distributed algorithms. Their solution consisted of
collaborative localization algorithm, dynamic task allocation
algorithm and collaborative mapping. The authors showed
some promising results using both simulated and real robots.

In [3] , they use Triangulation and Probabilistic techniques.
Triangulation technique use simple geometric properties along
with probability to calculate the location of an object from the
locations of other objects.



Fig. 1: Arena with GPS Denied and Accessible areas. The
term GPS Denied is used to describe areas where the robots
cannot obtain their own GPS location data. The term GPS
Accessible is used to describe the areas where the robots can
obtain their own GPS location data. The robot in red is the
point of interest.

Other pertinent localization approaches include GPS [7]
[6] and the approaches suggested by Blusu, Heidemann and
Estrin. [1]. The basics of GPS involve the use of a constel-
lation of satellites to enable the global use of a modified
triangulation localization technique. By having more than three
satellites visible to receivers across the globe the accuracy of
the triangulation is improved. In practice, this is frequently
supplemented with other localization data to further increase
the accuracy of the localization. The approach suggested by
Blusu, Heidemann and Estrin utilizes periodic short-range
radio frequency beacons from a fixed number of reference
points, in a similar system to GPS. However, they use an
idealized radio model that assumes perfect spherical radio
propagation and identical transmission range for their signal.

II. EXPERIMENTAL SETUP

This project team proposes to simulate the effects of part of
a swarm entering an absolute localization information sparse
area, like a cave, and develop accurate and effective methods
for the absolute localization of the swarm members in the
information sparse area.

A. Representation of the Environment

The arenas were be divided into regions with different levels
of absolute localization information available directly to the
individual robots in the swarm, as shown in graphically in
Figure 1 and in the ARGoS simulator in Figure 3.

B. Selection of Robots

For the purposes of this project the robots needed commu-
nication, localization, and locomotion abilities. The Khepera

Fig. 2: Arena showing swarm providing localization informa-
tion to a robot in GPS Denied area.

Fig. 3: Arena without Wall

IV robot in as simulated in ARGoS provides all three of
these properties. It has LED which can be used to convey
information to other robots. It has a positioning sensor de-
scribed as ”a sort of GPS” which can give absolute localization
information. It also has wheels and an actuator for the wheels
which can be used for locomotion. [2] It also has a bottom
mounted infrared sensor that can be used by the robot to
detect the floor color. In our experimental setup we plan to
differentiate the GPS accessible area from GPS denied area
by giving different colors to the tiles of the arena. To simulate

Fig. 4: Arena with Wall



Fig. 5: Geometry of the trilateration algorithm. The GPS
accessible robots are located at points P1, P2 and P3 with
distances r1, r2 and r3 from the GPS denied robot, located at
the intersection of the three circles.

the information provided by GPS in real Khepera IV robots,
one of two techniques will be utilized. If the experiments are
conducted in the lab the Vicon system will be used to provide
the localization information. Otherwise or in addition markings
in the arena and the downward facing sensor will be used. This
project also used the Foot-bot simulated in ARGoS which has
a blob camera which can be used for simple target location
finding.

C. Description of Task

In the environments described in II-A, the swarm will be
tasked with first enabling a rescue robot to localize itself
absolutely in a GPS denied region and second locating and
providing an absolute localization for a point of interest in the
GPS denied region, as shown in Figures 2 and ??.

III. ALGORITHM

A. Trilateration Algorithm

For localizing a robot in a GPS denied environment, we
use the Trilateration algorithm. This algorithm essentially
computes the intersection of three spheres. We start with
a robot K in the GPS denied environment. This robot is
surrounded by the neighbour robots who HAVE access to
GPS information as shown in Figure 5. The neighbours
broadcast their own location and distance to the robot
K periodically. From all the available neighbours, select
broadcasted information from 3 robots who themselves are
located at points (P1, P2 and P3) with distance (r1, r2 and
r3) respectively from robot K. Here, P1, P2 and P3 are 3x1
vectors and r1, r2 and r3 are scalars. With this information,
the robot K can compute its own location by the algorithm
shown below. This algorithm can then be repeated for all of
the neighbour triplets of the robot K. The resulting location

from all such triplets is then combined to get the absolute
position estimate.

The following algorithm computes the intersection of three
spheres. (Trilateration)

1. Given a robot K in GPS denied environment. This robot
is surrounded by the neighbour robots who HAVE access
to GPS information. The neighbours broadcast their own
location and distance to the robot K periodically.

2. From all the neighbours, sample broadcasted information
from 3 robots located at points (P1, P2, and P3) with
distance (r1, r2, and r3) respectively from robot K. [P1,
p2, and p3 are 3x1 vectors and r1, r2, and r3 are scalars]

3. Get the unit vector in direction from P1 to P2
• êx = P2− P1/‖P2− P1‖

4. Get the signed magnitude of the x component of vector
P1 to P3
• i = êx · (P2− P1)

5. Similarly, get the unit vector in y direction
• êy = P3− P1− iêx/‖P3− P1− iêx‖

6. The third basis unit vector is given as:
• êz = êx × êy

7. Distance between the points P1 and P2
• d = ‖P2− P1‖

8. Get the signed magnitude of y component of vector P1
to P3
• j = êy · (P3− P1)

9. The location of the robot K can then be given as:
• P = P1 + xêx + yêy + yêy
• x = (r21 − r22 + d2)/2d
• y = (r21 − r23 + i2 + j2)/2j − (i/j)x
• z =

√
(r21 − x2 + y2)

IV. EXPERIMENTS

Initially, the test was carried out in a static environment, in
which a total of 14 robots were placed in the environment, out
of which 12 robots were placed in the GPS accessible area,
1 stranded robot and 1 rescuer robot was placed in the GPS
denied environment. This was the case for every experiment
that we carried out. In this configuration, we also tested the
impact of noise on the performance of the algorithm, since its
impact would be clear due to it being the only change in a
static environment. The rest of the stages of our experiment
were specified by how they varied the experimental parameters
and in each stage we analyzed the effect of varying that
parameter on the accuracy of the localization of the rescue
robot.

A. Assumptions

The experiments were carried out in simulation with fol-
lowing assumptions:

1. No communication delay between robots when receiving
range and bearing broadcast information.

2. Robots perform perfect motion (no wheel slip)



3. During early trials, there is no noise in the GPS informa-
tion (absolute location) was be kept binary
• Either robot knows its position through GPS or doesn’t
• Later, noise was added to the available GPS informa-

tion and the localization accuracy was tested.

B. Parameters Explored

The later stages of our experiment, after testing the basic
static case, were specified by how they varied the experimental
parameters. The parameters explored were:

1. The effect of adding sensor noise.
2. The effect of varying the percent of GPS robots moving

with static rescue and disabled robots.
3. The effect of moving the rescue robot with static GPS

robots.
4. The effect of varying the percent of GPS robots moving

with moving rescue robot and static disabled robot.
5. The effect of moving rescue robot purposefully with

moving GPS robots and static disabled robot.

V. RESULTS

For all the graphs shown below, the dashed line indicates
the average (estimated) X and Y position of the rescuer robot
to be located in the GPS denied environment. The shaded area
in the graph shows the minimum and the maximum coordinate
values estimated for the rescuer robot and the solid line shows
the absolute(real) location of the rescuer robot.

A. Static Robots

For the first experiment, all the robots in the GPS accessible
and GPS denied environment were kept static and the noise in
the sensor was kept at zero. Multiple random starts were tested.
The results for two of the seeds can be viewed in Figures 6
and 7.

To observe the effect of adding sensor noise, in the second
experiment, all the robots in the GPS accessible and GPS
denied environment were kept static and 0.01 noise was added
to the sensor. Multiple random starts were tested. The results
for two of the seeds can be viewed in Figures 6 and 7.

For the second experiment, all the robots in the GPS
accessible and GPS denied environment were kept static and
0.01 noise was added to the sensor. Multiple random starts
were tested. The results for two of the seeds can be viewed
in Figures 10, 11, 12, 13, and 14.

B. Moving Robots

To observe the effect of varying the percent of GPS robots
moving with static rescue and disabled robots. Trials were
run with 10%, 30%, 50%, 70%, and 90% of the GPS robots
moving. The results for these trials are shown in Figures 10
and 11.

For the fourth experiment, all the robots in the GPS ac-
cessible environment were kept static and the rescue robot
was moving. The results of this experiment can be seen in
Figure 15.

To observe the effect of varying the percent of GPS robots
moving with moving rescue robot and static disabled robot,
trials were run with 30% and 70% of the GPS robots moving.
These combined with the fourth experiment (see figure ??
gave three data points that indicated performance at no, low,
and high amounts of motion. The results for these trials are
shown in Figures 16 and 17.

The last experiment was designed to observe the effect of
moving rescue robot purposefully with moving GPS robots and
static disabled robot. Foot-bots were used for this experiment,
since they have a blob camera that could locate an LED beacon
lit on the disabled robot. This is meant to simulate rescue of
the disabled robot. In this experiment the rescue robot located
the disabled robot by use of the LEDs and camera and traveled
towards the disabled robot. The results of this experiment can
be seen in Figure 18.

VI. ANALYSIS

As expected, the results shown in Figures 6 and 7 indicate
that the localization is highly accurate when all robots are sta-
tionary. The spread between the maximum and the minimum
estimated positions for both X and Y and the error associated
with those positions is very essentially zero. Similarly, the
actual position lines follow the estimated position lines so
precisely that they appear as one line in the visualization.
Adding sensor noise, as shown in Figures 8 and 9 increased
the spread of the estimate maximum and minimum possible
values for X and Y but still kept the estimated position very
close to the actual position. The increase in this error can be
seen in the error plots where there is a wider spread. Even with
the wider spread the error is still constrained to approximately
plus or minus 4 centimeters. The effect of varying the percent
of GPS robots moving with static rescue and disabled robots
was minimal on the accuracy of the localization. As shown
Figures 10, 11, 12, 13, and 14 The effect of moving the
rescue robot with static GPS robots and a significant impact
on the accuracy of the localization and also the calculated
minimum and maximum values, as shown by the spread in
Figure 10. Here it can also be observed that there is a lag
in the estimated position in reacting to changes in the actual
position. This may indicate that a different filter might provide
better performance over the average filter used in this study.
The effect of varying the percent of GPS robots moving
with moving rescue robot and static disabled robot reflect
the observations made in previous sections of the project
as shown in Figures 15, 16, and 17 as the errors combine
to produce a very wide spread in the estimated minimum
and maximum positions. The effect of moving rescue robot
purposefully with moving GPS robots and static disabled
robot also reflected the previous results. At the start of the
experiment the robot was stationary since it was still locating
the disabled robot, this is reflected in Figure 18 where the pre-
dicted locations follow the actual locations tightly for the first
portion of the position graphs. Similarly, the spread between
the minimum calculated position and the maximum calculated
position is very small for this portion. Then the predicted and



actual position diverge more while the Foot-bot is moving
towards the target. Similarly the minimum and maximum
values show an increase in spread. As the robots velocity
stabilizes the spread from minimum to maximum possible
position reduces. Then, as expected, the accuracy significantly
increases once the Foot-bot has reached the disabled robot
and becomes stationary. While carrying out the experiments,
the experimenters found that maintaining the consistency of
the GPS beacon data, especially with the moving beacon was
difficult. Its location and its distance from the rescue robot
was continuously changing. The team figured out that this
inconsistency was mostly due to the lag in transmitting the data
from the GPS accessible robots to the GPS denied robot in the
simulator. The team attempted to solve this problem by adding
some bias to the values received by the GPS denied robot,
by analyzing the transmitted data continuously and observing
the error. This could also be solved by putting time-stamps on
beacon messages like the real GPS transponder in future work.
The team also noticed that the average filter is sensitive to the
spikes in the estimates. A median filter or a low pass filter can
solve this problem and were considered but these were ruled
out due to their introduction of latency in the estimation. The
team hypothesizes that ideally, a Kalman filter could be used
to provide the needed fusion in the predicted position from
trilateration and predicted position obtained by integration of
velocity.

VII. CONCLUSION AND FUTURE WORK

It can be concluded that the movement of the Rescue
Bot itself introduced the most inaccuracy in localizing itself.
Similarly, the presence of noise in the sensor data transmitted
by the GPS accessible robots to the rescue robot in the GPS
denied environment introduced the next most inaccuracy.

In these experiments the filter used was an average filter.
Future work could include implementing a Kalman Filter on
the sensor data and determining whether it provides better
performance. Other interesting avenues to pursue in future
work include:

1) Minimization of the increase in localization inaccuracy
associated with rapid location change.

2) Exploration performance characteristics when the swarm
is associated with more complicated behaviors such as
moving the GPS accessible robots and changing the
behaviour of that robot to a rescuer robot depending on
the closeness of that particular robot to the stranded robot.

3) Exploration of the effect of obstacles
4) Exploration of the effect more complicated arena geom-

etry
• ex: horseshoe shaped arenas, hourglass shaped arenas,

mazes, etc
5) Exploration of the effect of how sharply the information

availability drops off at the constriction is another area
to investigate.
• representation of decrease in GPS through simulating

dropped packets or increased noise

6) Solving the simulator inconsistency problem and at the
same time making the algorithm more directly applicable
to real robots, through the introduction of the use of time-
stamps, velocity calculations, and the use of more of the
sensors.
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(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 6: Static Environment - Seed 1: In a) and b), the bounds of the shaded regions are the calculated min and max possible
location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 7: Static Environment - Seed 2: In a) and b), the bounds of the shaded regions are the calculated min and max possible
location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 8: Static Environment with noise - Seed 1: In a) and b), the bounds of the shaded regions are the calculated min and max
possible location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 9: Static Environment with noise - Seed 2: In a) and b), the bounds of the shaded regions are the calculated min and max
possible location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 10: 10% Moving GPS robots: In a) and b), the bounds of the shaded regions are the calculated min and max possible
location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 11: 30% Moving GPS robots: In a) and b), the bounds of the shaded regions are the calculated min and max possible
location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 12: 50% Moving GPS robots: In a) and b), the bounds of the shaded regions are the calculated min and max possible
location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 13: 70% Moving GPS robots: In a) and b), the bounds of the shaded regions are the calculated min and max possible
location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 14: 90% Moving GPS robots: In a) and b), the bounds of the shaded regions are the calculated min and max possible
location at that point in time. The dashed line is the estimated position and the solid line is the actual position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 15: Static GPS Robots and Moving Rescue Robot: In a) and b), the bounds of the shaded regions are the calculated
min and max possible location at that point in time. The dashed line is the estimated position and the solid line is the actual
position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 16: 30% Moving GPS Robots and Moving Rescue Robot: In a) and b), the bounds of the shaded regions are the calculated
min and max possible location at that point in time. The dashed line is the estimated position and the solid line is the actual
position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 17: 70% Moving GPS Robots and Moving Rescue Robot: In a) and b), the bounds of the shaded regions are the calculated
min and max possible location at that point in time. The dashed line is the estimated position and the solid line is the actual
position.



(a) X Position (b) Y Position

(c) X Position Error (d) Y Position Error

Fig. 18: 70% Moving GPS Foot-bots and Moving Rescue Robot: In a) and b), the bounds of the shaded regions are the
calculated min and max possible location at that point in time. The dashed line is the estimated position and the solid line is
the actual position.
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