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Abstract 
 

For this project, we propose to learn bipedal walking using Artificial Intelligence 
techniques. We plan to use Walker2d-v2, an OpenAI Gym environment as our testbed. The AI 
agent will have to learn a policy which allows the simulated humanoid to walk or run as far as it 
can without falling. We wish to test out two promising approaches to the problem, namely, 
Genetic Algorithms and Reinforcement Learning. We would then like to compare the two AI 
agents with a random agent and see how each walker performs. 
 
Introduction 
 

An important learning paradigm for walking of robots in the recent years is 
Reinforcement Learning (RL). Over the years Genetic Algorithms also proved to be efficient in 
solving this problem. We have compared these two approaches to train a Walker in Mujoco 
physics simulation engine. Mujoco is the first full-featured simulator designed from the ground 
up for the purpose of model-based optimization, and in particular optimization through contacts. 
The state space and the action space of this environment is 17 and 6 respectively. The image 
below shows the ‘Walker2d-v2’ in Mujoco environment. 
 

  
                                                                Fig 1: Walker2d-v2 
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We have also used another environment from Mujoco named ‘Hopper-v2’ whose state 
space and action space is 11 and 3 respectively. This is was used along with ‘Walker2d-v2’ to 
train a Genetic Algorithm. The image below shows the ‘Hopper-v2’ in Mujoco environment. 
 

 
                Fig 2: Hopper-v2 
 

 
Random Agent 
 
 A random agent takes a purely random action at every time step, thus not learning from 
its experience to improve its performance. We use a random agent to build a baseline for our AI 
algorithms to beat. The results of a random agent in the Walker2d-v2 environment is shown 
below. 
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The x-axis is the number of episodes while the y-axis shows the score. These results are not 
surprising because it is an unintelligent agent. It can be seen that the average score is very close 
to zero. In fact, it is around 1.5; to put it in perspective, a score of about 5000 is required to call 
the environment solved. 
 
Deep Deterministic Policy Gradients 
 

Real world problems are high dimensional and learning function approximations that 
map a continuous high dimensional state space to a continuous high dimensional action space is 
a hard task. The model(transition model T(st+t|st,a)) is of magnitude s x s x a and for real world 
problems it would be infinitely large. One approach is to have a notion of the direction in which 
the function approximation for policy has to be changed in order to maximize the expected 
reward for taking actions according to the policy the agent is learning. One such approach is the 
policy gradient approach. Policy gradient methods in reinforcement learning have become 
increasingly prevalent for state-of-the-art performance in continuous control tasks. The 
deterministic policy gradient has a particularly appealing form: it is the expected gradient of the 
action-value function. This simple form means that the deterministic policy gradient can be 
estimated much more efficiently than the usual stochastic policy gradient.  

 
The basic idea is to represent the policy by a parametric probability distribution πθ(a|s) = 

P [a|s; θμ] that stochastically selects action a in state s according to parameter vector θμ. Policy 
gradient algorithms typically proceed by sampling this stochastic policy and adjusting the policy 
parameters in the direction of greater cumulative reward. Function approximations for real world 
problems are very complex and cannot be engineered easily. With the advent of Deep Neural 
Networks to learn highly complex function approximations, a very active field of research is the 
use of such techniques to make reinforcement learning agents learn a policy function that maps a 
state to action. Deep Deterministic Policy Gradient is one such technique where there are two 
networks that work in symphony to learn a Q value function and a policy function, parametrized 
by the network parameters θQ and θμ respectively. The network that learns the policy function is 
called the actor network and the network that learns the Q value function is called the critic 
network. The policy that the actor network has learnt is evaluated by the critic network and there 
is a TD error that tells it how the actor and critic have to change their parameters (weights) as 
seen in figure 3. 
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      Fig 3: Actor-Critic Architecture [6] 

 
DDPG is an off-policy learning algorithm where the agent updates its policy using 

another policy. This is very similar to Q-learning where the policy of the agent is learnt using a 
greedy policy to calculate the TD error.  
 
The algorithm: 
 A Q-Value function, a policy and an exploration scheme are characteristics of any 
reinforcement learning problem.  
 
Q-Value function and Policy function: 

The agent interacts with the environment at every discrete time step t, receives an 
observation st , takes an action at, ends up in a state st+1 and receives a scalar reward rt. The Q-
Value is the expected accumulated reward that the agent would get taking actions according to 
the policy it has learnt till the trial ends. The agent tries to learn a policy that maximizes the Q-
Value. DDPG being an off-policy learning algorithm uses a greedy policy to update its current 
policy, very similar to Q-learning. To scale such simple off-policy algorithms to solve problems 
of such high dimensional spaces using Neural networks, two concepts were introduced : replay 
buffer and a target network. The target network computes the true Q-value for that state action 
pair that serves as the true value for computing the error in the critic network (will be discussed 
below).  

Neural Networks can learn good general function approximation when the data used to 
train it is independent and identically distributed (i.i.d). The problem in a reinforcement learning 
scenario is that the state where the agent would end up in and the action it would take from there 
are dependent on the previous state and the action the agent had taken. Thus, the data is not 
independent. One solution to this problem is to store all the experiences (st , at , st+1 , rt) in a 
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replay buffer and sample randomly a batch of fixed size. At each time step an action is taken, a 
state is observed and a reward is obtained and these are added to Replay, a batch is sampled and 
the actor and the critic networks are trained. NNs are basically matrix multiplications and 
additions (linear operations) that map the inputs to the outputs. To increase their ability to 
generalize on large dimensional data there must be non-linear activations that makes the function 
learn better. In reinforcement learning scenarios adding non-linearities might lead to instability 
sometimes also divergence. This is because of the fact that small updates to Q may significantly 
change the policy and therefore change the data distribution, and the correlations between the 
action-values and the target values.  

 
To solve this problem a variant of a method to update target networks proposed by Mnih 

et al.[7] was used. Two target networks (for policy and Q-value) are necessary to have stable yt 
(used to calculate loss function) to train the critic network without divergence. So, the parameters 
of the actor and the critic are copied into the target actor and critic. The weights of the target 
networks are updated using a weighted sum between the weights of the trained and the target 
network giving the weights of the trained network a very small weight. Thus the target values 
change very slowly thereby improving stability. So, basically the yt obtained using the target 
networks (mentioned below) are used as true values to train the critic network. The problem of 
training the reinforcement learning agent now reduces to a supervised learning problem which is 
stable. 
 
Exploration Noise:        
 Exploration-exploitation trade-off is a key concept in reinforcement learning. Knowing 
when to stop exploring and when to start exploiting the policy learnt is of utmost importance. 
Exploration is necessary in a stochastic world to find out the best possible policy that the agent 
should follow to maximize the expected reward for the agent. The exploration strategy used is an 
Ornstein-Uhlenbeck noise [8] which is a mean-reverting noise,i.e., as time passes the noise 
slowly zeros out towards its mean value. The OU Noise is given by: 
 

 
 
Where, Wt is a Wiener process [9] for which dWt is a Gaussian with mean = 0 and variance = 1. 
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Fig 4: DDPG algorithm 

The actor policy is updated using the sampled policy gradient given in the algorithm. 
This is obtained by a simple chain rule that splits it into two vector terms being multiplied. The 
first term is obtained from the critic network and the second term from the 
gradient of actor net’s outputs with respect to its parameters.  
 
Hyperparameters: 
These hyperparameters were borrowed from Lillicrap et al.’s paper [3] 

Hyperparameters Actor Critic 

Number of hidden layers 2 2 

Number of units/layer 1st layer 400, 2nd layer 300 1st layer 400, 2nd layer 300 

Activation Both hidden layers - softplus 
Final output - tanh 

Both hidden layers -  softplus 
Final output - tanh 

Learning Rate 1e-4 1e-3 

τ 1e-2 1e-2 
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Other non-learnable parameters: 
Ɣ = 0.99 
Batch size = 64 for both actor and critic 
Length of replay buffer  = 100000 , remove initial entries if full 
Noise: 
μ = 0 
Θ = 0.15 
σ = 0.2 
 
The weights of the network are initialized from a normal distribution with zero mean and 
standard deviation equal to 1/√� , where n is the number of inputs to the layer (fan-in). This is 
done because the tanh activation function used in the output layer is very sensitive(discussed 
below).  
 
The reward structure for the environment is as follows: 

The environment has a position handle that gives position of Center of Mass (horizontal), 
height of Centre of Mass (vertical) and the angle of the robot. The robot is only allowed to tilt 
upto a certain angle. If it moves more than that, the episode terminates. The episode also 
terminates when the robot’s Center of Mass goes above or below a height of 2 and 0.8 
respectively. There is a reward for the robot moving forward  given by reward = ((posafter - 
posbefore) / dt), a +1 reward for being alive and a negative reward given by 0.001*(norm of 
action taken). The actions are continuous ranging from [-1.0,1.0]. This explains the tanh 
activation being used. 
 
Results 
 
 
Trial 1: 
 With the above mentioned parameters, agent after training for 2000 episodes, had learnt 
to jump in the air within the height limit of the environment mentioned above by rotating just its 
angle joints. The policy had saturated. This is because the living reward is pretty high, compared 
to other rewards and it is good to live longer without taking too many actions. We thought it 
might have been due to a low value of sigma of the OU Noise and tried tweaking that. 
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Trial 2: OU Noise: sigma = 0.3 
 With the other parameters remaining the same we ran the trials again. The agent had 
explored slightly better but one thing we realised was that the actions it was performing was 
either 1 or -1 and had saturated at that point. We realised that the weights had dropped to zero. 
 

 
 
 
This is because we can see that around the value of (-2,2) the function has a gradient and 
otherwise it is a straight line parallel to the X-axis. This means that in the regions greater than 2 
and less than -2 the gradient term for the last layer drops to zero. Back propagation is nothing but 
a simple gradient based update and since the gradient of the last layer is zero, gradient of all the 
weights wrt the output becomes zero. Thus none of the weights are updated further. We realized 
that using a function such as tanh that squishes the output but results in saturation is a bad 
decision. Instead we decided to manual engineer our gradient terms. 
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Trial 3: Inverting the Gradients [10] 
 In this method, the gradients are decreased as the agent’s actions start going closer to the 
boundaries of the action space and are inverted (sign changes) if parameters cross the bounds. 
We can see below that as p gets closer to pmax or pmin the gradient term becomes closer to zero 
and as it crosses the bounds the gradient term changes sign. 

 
This is better than using a tanh activation function because it does not lead to saturation but also 
keeps the action between the bounds. When we tried this out the agent had learnt two things. One 
was to move one of its legs backward if it is about to fall behind to balance itself and tried to stay 
still doing minimal actions as it received a positive living reward. Another thing it had learnt was 
to rotate its ankles whenever it fell forward as this also pushed it forward and kept it living 
longer with minimal actions. 
 

               



 
 
**All the graphs: X axis - Number of episodes 
    Y axis - Total reward received per episode  

 
Trial 4: Cyclic action space 
 One more thing we realised was that the agent does not initially explore that much. This 
is attributed to the fact that the initial exploration noise is high and when added to the action it 
leads to the action being above 1 or below -1 (beyond the bounds). This sets the joints to their 
maximum actions thereby not exploring much initially and as time passes exploration reduces 
and it start to exploit the policy that it has learnt which is to hop by moving its ankle. Thus we 
made a loop enclosure for the action space. In other words say if the action was 1.2 then the 
action would loop 0.2 (1.2-1 = 0.2) from -1 giving an action of -0.8. This lead to an exploration 
behavior that was intended in the paper [3]. We saw the agent performing more sets of actions 
and learning running gaits. Since there is more exploration due to cyclic in this case we ran it for 
a larger number of episodes. 

                    
 

Trial 5: Batch Normalization 
 We realized that the input data (the state space) to the neural networks had a large 
variance (as it ranges from -inf to inf and is high dimensional) in certain directions and the 
training was very slow and susceptible to local minima. So, we had to whiten the data to 
basically condition the data in such a way that the agent does not reach a local minima. So, we 
tried to implement the batch normalization method which is an approximate whitening 
transformation. We were not able to implement it within the limit and decided to continue on this 
in the near future. 
 
Deep GA 
 

Inspired by recent work by Salimans et.al., Uber AI Labs have released a paper that seeks 
to apply gradient-free evolutionary algorithms for evolving the weights of deep neural networks, 
a novel and fascinating combination that reportedly worked. They were able to train a neural 
network to perform well in RL tasks solely through basic genetic algorithms and demonstrated 
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that the trained network is competitive with most DRL trained networks (like DDPG and TRPO). 
This paper is titled “Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for 
Training Deep Neural Networks for Reinforcement Learning” and the most recent draft was 
updated on April 20, 2018 (a mere 10 days ago, if you are reading this on May 2). 
 

We found this paper very interesting and decided it would make for a good comparison 
with standard DRL algorithms like the DDPG we are implementing. The core idea is simple 
enough. Instead of using traditional gradient-based updates like backpropagation to update the 
weights of the neural network, the authors suggest using a genetic algorithm to intelligently 
search for a combination of weights that result in a high accuracy or reward, depending on how 
the fitness function is defined. This idea is not exactly new, researchers have attempted it earlier 
but, given the high dimensionality of the weights of a deep neural network, genetic algorithms 
were not very computationally feasible for this problem. 

 
As part of this project, we apply the Deep GA algorithm to the Walker2d-v2 environment 

and attempt to learn a simple walking policy on flat ground. Since it is the action policy that 
needs to be learnt, we represent the policy with a deep neural network and try to learn the best 
combination of network weights. We opt for a simple 3-hidden-layer (64, 128, 64) network with 
tanh activation function at each layer. The network structure was motivated by the fact that the 
input and output layers have 17 and 6 nodes each. The activation function was chosen because 
the actions were all supposed to be in the range [-1, 1] for the Walker2d-v2 environment. The 
weights of this neural network act as the parameter state of the genetic algorithm. Since the 
entire network is just (17, 64, 128, 64, 6), the total parameter count comes up to about 18K 
parameters for a single set of weights. Although it might sound like a lot, this is a very small 
parameter space in deep learning standards. Yet, for a genetic algorithm, it is a very high 
dimensional space to effectively search.  

 
The paper uses a basic variant of genetic algorithms with just elitism and mutation, but no 

crossover and justifies this choice by saying the authors wanted to try to set a baseline for genetic 
algorithms. We follow a similar model except we also include crossover. Considering the 
hyperparameters used in the paper (population size of 12,500, mutation strength of 0.0022 and 
1,500 generations) were computationally huge and were chosen for the more complex and high-
dimensional Humanoid-v2 environment, we went with a more reasonable set of hyperparameters 
for our Walker2d-v2 environment. Given below is a summary of our parameters: 
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Hyperparameter Name Hyperparameter Value 

Neural Network (17, 64, 128, 64, 6) 

Activation Function tanh 

Population Size 1000 

Mutation Strength 0.01 

Number of Generations 500 
 
 
 Keras, the package we use to create our neural network in Python, initializes the networks 
using Xavier initialization (random weights, zero biases). We mutate this initializes weights with 
a mutation strength of 0.5 to generate the initial population for the genetic algorithm. The 
mutation strength was set much higher than usual to encourage initial exploration. Mutation of 
the weights was implemented in a very straight forward way; we randomly perturb each element 
of the weights with a maximum deviation equal to the mutation strength. This slightly moves the 
entire network in a random direction when visualized in the parameter space and gives rise to 
most of the exploration that is key to genetic algorithms. Elitism simply retains a certain 
percentage of the top performing (according to fitness) individual states in the population. 
  
 Our implementation of crossover is quite straight forward too but needs some 
justification. We simply swap the weights cut at a random layer in the neural network. For 
example, the child might get the weights of the first two layers of the mother network and the 
weights of the last layer of the father network. The idea behind this implementation is that the 
initial representation learnt by one network might work well with the final representation of 
another network. Since, the original paper uses no crossover at all, we too keep our crossover 
rates low and mutation rates high. By default, we use 10% elitism, 60% mutation and 30% 
crossover. 
 
Results 
 
Overall, the results of Deep GA are not very promising.  
 
One issue we faced was the definition of the fitness function. We initially defined the fitness 
function to equal the reward achieved during one episode of the environment using the policy 
defined by neural network policy loaded with the weights. It lead to reasonably good graphs 
initially such as the ones below.  
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The graphs show the best individual reaching scores of over 350 while the average score of the 
generation creeps up to around 25-30. The x-axis shows the number of generations. 
 
But, we believe this fitness function is not a true representation of the individual’s performance. 
This is because some experiments show that saving these network weights and reloading them 
does not lead to the policy network achieving scores around 350. This suggests that the OpenAI 
environment incorporates noise into its simulation and achieving a good score once does not 
translate well to other episodes. 
 
Hence, we designed a new fitness function that runs 3 episodes with the same network and 
averages these three scores to build a better estimate of the network’s fitness. A larger set of 
simulations would be even better, but we are pressed for training time and computational 
resources and hence settled for three. This new formulation of the fitness function changed the 
entire performance of the algorithm and also made it much slower to test, about 3 times slower. 
The best individual in the first 200 generations now barely breaks above the score of 30-40 while 
the average score of the generation stays below 0 for most generations. 
 
We believe the second fitness function is a much more representative one than the first. The 
disappointing performance of Deep GA in our experiments compared to its performance reported 
by Uber AI has only one sensible explanation: computational time and resources. The Deep GA 
paper ran 1500 episodes for a population size of 12,500. We ran it for a much shorter population 
size and much less generations and observed run times of up to 12 hrs at a stretch. This makes 
sense because an 18K dimensional space is extremely huge and difficult to search. The genetic 
algorithm would require a lot of time to find the direction which leads to a better fitness. In spite 
of running it on multiple cores of our CPUs, for 500 generations, we were not able to find one 
which consistently performs a score of over 100. It would be interesting to see how Deep GA 
would perform with much longer training times. 
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Conclusion 
  
We implemented two AI algorithms in a bipedal walking setting and compared their 
performance against a random agent. The random agent performs extremely horribly as 
expected. The DDPG algorithm is the most promising of them all. The agent learns to balance 
itself and not fall down quickly. The agent also tries to hop forward because moving ahead 
would give a more positive reward. It has not learnt to walk consistently yet but it does realise 
that it has to try to stay up and hop forward. With more training and perhaps better parameter 
tuning, it might very well learn to walk and run. We also tried an extremely new approach 
suggested by Uber AI Labs called Deep GA. In spite of faithfully implementing their algorithm, 
we were able to achieve some success but nowhere close to what they report. We believe this is 
because of the computational time and resources we could spare for the task. 
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